
Math 429 - Exercise Sheet 14

1. Compute the character of the representation ∧kCn of sln, given our explicit description of its
weight spaces in Lecture 13, and use this to verify the Weyl character formula (197).

Solution. Let (v1, . . . , vn) be a basis of Cn. Then every element vi1∧· · ·∧vik , 1 ≤ i1 < · · · < ik ≤ n
of the induced basis of ∧iCn is a weight vector. More precisely, the diagonal matrix (x1, . . . , xn) in
the Cartan subalgebra h acts as

(x1, . . . , xn)vi1 ∧ · · · ∧ vik = (xi1 + · · ·+ ik)vi1 ∧ · · · ∧ vik .

These eigenvalues correspond to the elements

ei1 + · · ·+ eik , 1 ≤ i1 < · · · < ik ≤ n

in the weight lattice, and the highest weight is ωk = e1 + · · · + ek. Setting zi = exp(ei), the
above decomposition tells us that the character of this representation is the elementary symmetric
polynomial

χ(ωk) =
∑

1≤i1<···<ik≤n

zi1 · · · zik . (1)

We verify that(1) corresponds to Weyl‘s formula. The symbol eωk corresponds to the monomial
z1 . . . zk. Plugging this inside the expression in paragraph 14.5 of the Lecture Notes we get

χ(ωk) =

∑
w∈Sn

sgn(w)
∏n

i=1 z
δi≤k+n−i

w(i)∏
1≤i<j≤n(zi − zj)

, (2)

where δi≤k is the delta function for the condition i ≤ k. First we observe that the expression (2) is
symmetric. In fact, permuting the variables via an element w′ ∈ Sn changes both the numerator and
the denominator by a factor of sgn(w′). Since any symmetric function has poles of even degree1,
we deduce that the simple singularities at zi = zj in (2) must be solvable. In other words the
denominator divides the numerator, and the whole expression is a polynomial in the z’s. Finally,
we use the following minimizing property of the elementary symmetric function (1), which is easy
to check.

Lemma 1. Let f(z1, . . . , zn) be a symmetric function. If the fraction
f(tz1,...,tzk,zk+1,...,zn)

tk
has finite

limit for t → ∞, then f equals the elementary function (1)2.

We compute the highest power of t occurring in the numerator and denominator of (2) when scaling
the variables as in Lemma 1. In the denominator, such highest power occurs in

(tz1)
n(tz2)

n−1 . . . (tzk)
n−k+1zn−k−1

k+1 . . . zn−1 = tk(n−
k−1
2

)zn1 z
n−1
2 . . . zn−k+1

k zn−k−1
k+1 . . . zn−1. (3)

1You can prove this by expanding any symmetric function f(z1, . . . , zn) at |zi − zj | << 1, while considering the
other variables as constants.

2The symmetry property implies that this condition has to hold when scaling whichever k variables.
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On the other hand, the denominator becomes∏
1≤i<j≤k

t(zi − zj)
∏

1≤i<≤k<j≤n

(tzi − zj)
∏

k<i<j≤n

(zi − zj).

The first factor gives tk(k+1)/2. In the second factor every index 1 ≤ i < j ≤ k appears n − k − 1
times, so the exponents add up to

tk(k+1)/2tk(n−k−1). (4)

Multiplying the inverse of (4) with (3), we find exactly tk.

2. Looking back to Exercise 5 on last week’s sheet, compute the character of the tautological
representation of o2n+1, sp2n, o2n, respectively (and use this to verify the Weyl character formula).

Solution. We solve the exercise explicitely in typeDn, the other ones being analogous. Remember
our choice of Cartan subalgebra h ⊂ o2n, consisting of block-diaginal matrices, having the matrix[

0 ak
−ak 0

]
, ak ∈ C

in the kth block. It is then clear that the weight decomposition of C2n for the tautological action
of o2n is given by the one dimensional weight spaces generated by the vectors

v±k = (0 . . . 0

kth pos.︷︸︸︷
1 ±i 0 . . . 0)T .

Furthermore, the eigenvalue associated to v±k sends a matrix in the Cartan subalgebra to ±iak.
Recalling our description of the root system in Sheet 9, we see that this corresponds to the element
±ek in the weight lattice. We can write down the character of this representation as a Laurent
polynimial in the variables

zk = exp(ek).

According to the above analysis, we get

χ(e1) =
n∑

i=1

(
zi +

1

zi

)
. (5)

We observe that the last expression is symmetric with respect to the usual Sn action, and with
respect to the reflections zi 7→ 1/zi, corresponding to ei 7→ −ei. These trasformations actually
generate the whole Weyl group of the Dn root system (which you can think inside S2n).
We check that the expression of Weyl character formula has the same symmetries as (5) by ex-
pressing it in the z variables. The sum ρ of all positive roots is

1

2

∑
1≤i<j≤n

(ei − ej) + (ei + ej) =
n−1∑
i=1

(n− i)ei,

so that exp(ρ) = zn−1
1 zn−2

2 . . . zn−1. Since the highest weight of this representation is e1, the
numerator of Weyl‘s formula is∑

w∈W
sgn(w) znw(1)z

n−2
w(2)z

n−3
w(3) · · · zw(n−1). (6)
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Assuming the above description of the Weyl group, we see that permuting the variables and applying
reflections zi 7→ 1/zi changes the expression (6) by the sign of the transformation. The denominator
becomes ∏

1≤i<j≤n

(
zi
zj

− zj
zi

)(
zizj −

1

zizj

)
, (7)

which has clearly the same behavior as the numerator with respect to the above transformations.
Thus the product

∑
w∈W

sgn(w) znw(1)z
n−2
w(2)z

n−3
w(3) · · · zw(n−1) ·

∏
1≤i<j≤n

(
zi
zj

− zj
zi

)−1(
zizj −

1

zizj

)−1

(8)

enjoys the same symmetries as (5). Weyl’s theorem tells us that the two expressions are actually
the same.

3. The adjoint representation of any simple Lie algebra is L(θ), where θ denotes the maximal root
(i.e. the unique positive root such that θ + α /∈ R for all α ∈ R+). Compute the character of the
adjoint representation of sln, and verify the Weyl character formula.

Solution. The maximal weight of the adjoint representation is the only root in the dominant
Weyl chamber. With the usual choices of positive roots and simple roots, this maximal weight is
θ = e1 − en. The weight decomposition coincides with the usual root decomposition of sln, so the
character in the z variables takes the form

(n− 1) +
∑

1≤i<j≤n

(
zi
zj

+
zj
zi

)
.

4. It is easy to see that L(0) = C for any semisimple Lie algebra g (construct the action explicitly),
and so the Weyl character formula implies the equality∑

w∈W
sgn(w)ew(ρ) =

∏
α∈R+

(e
α
2 − e−

α
2 ) (9)

Prove this formula directly using the theory of root systems (Hint: show that both sides of the
equation are Weyl group anti-invariant).

Solution. Let α1, . . . , αN be the positive roots in R. We expand the left hand side as∑
w∈W

sgn(w)e
1
2
(w(α1)+···+w(αn)). (10)

We must prove that after expanding the product on the right hand side of (9), and after all the
cancallations, the only surviving summands are those in (10). We check that the right hand side of
(9) is Weyl group anti-invariant. Let sk ∈ W be the simple reflection with respect to some simple
root αk. Then the only positive root which becomes negative after applying sk is αk, and

sk

(
N∏
i=1

(e
αi
2 − e−

αi
2 )

)
=
∏
i ̸=k

(e
αi
2 − e−

αi
2 )(e

−αk
2 − e

αk
2 ) = −

N∏
i=1

(e
αi
2 − e−

αi
2 ).
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Since the Weyl group is generated by the reflections at simple roots, this proves our claim. This
symmetry property implies that, after expanding the product on the right hand side of (9), a
summand

±e
1
2
(±1α1 ... ±nαn)

occurs if and only if

± sgn(w)e
1
2
(±1w(α1) ... ±nw(αn))

occurs as well, for every element w ∈ W . Since the summand e
1
2
(α1+ ... +αn) clearly occurs, this

concludes the exercise.

(*) Consider the following inner product of characters

(f, g) =
1

|W |

∫
fg
∏
α∈R

(e
α
2 − e−

α
2 ) (11)

where
∫
eλ = δλ0 and eλ = e−λ. Prove that (f, g) = (g, f) and use the Weyl character formula to

show that the characters of irreducible representations are orthogonal with respect to (11).
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